Help:Math
Only a limited part of the full TeX language is supported; see below for details.
Syntax
Math markup goes inside
:<math>
...
</math>
The edit toolbar has a button for this. To number equations, write
:<math> \label{label} ... </math>
and refer as \eqref{label}. For example, \[ \tag{1} x^7 \] is Eq.(1).
Functions, symbols, special characters
Accents/Diacritics | |
|---|---|
| \acute{a} \grave{a} \hat{a} \tilde{a} \breve{a} | \(\acute{a} \grave{a} \hat{a} \tilde{a} \breve{a}\,\!\) |
| \check{a} \bar{a} \ddot{a} \dot{a} | \(\check{a} \bar{a} \ddot{a} \dot{a}\,\!\) |
Standard functions | |
| \sin a \cos b \tan c \cot d \sec e \csc f \arcsin k \arccos l | \(\sin a \cos b \tan c \cot d \sec e \csc f \arcsin k \arccos l\,\!\) |
| \arctan m \sinh g \cosh h \tanh i \coth j \operatorname{sh}g \operatorname{argsh}k \operatorname{ch}h | \(\arctan m \sinh g \cosh h \tanh i \coth j \operatorname{sh}g \operatorname{argsh}k \operatorname{ch}h\,\!\) |
| \operatorname{argch}l \ \operatorname{th}i \ \operatorname{argth}m \ \lim n \limsup o \liminf p \min q \max r | \(\operatorname{argch}l \ \operatorname{th}i \ \operatorname{argth}m \lim n \limsup o \liminf p \min q \max r\,\!\) |
| \inf s \sup t \exp u \ln v \lg w \log x \log_{10} y \ker x | \(\inf s \sup t \exp u \ln v \lg w \log x \log_{10} y \ker x\,\!\) |
| \deg x \gcd x \Pr x \det x \hom x \arg x \dim x | \(\deg x \gcd x \Pr x \det x \hom x \arg x \dim x\,\!\) |
Modular arithmetic | |
| s_k \equiv 0 \pmod{m} a \bmod b | \(s_k \equiv 0 \pmod{m} a \bmod b\,\!\) |
Derivatives | |
| \nabla \partial x dx \dot x \ddot y | \(\nabla \partial x dx \dot x \ddot y\,\!\) |
Sets | |
| \forall \exists \empty \emptyset \varnothing | \(\forall \exists \empty \emptyset \varnothing\,\!\) |
| \in \ni \not \in \notin \subset \subseteq \supset \supseteq | \(\in \ni \not \in \notin \subset \subseteq \supset \supseteq\,\!\) |
| \cap \bigcap \cup \bigcup \biguplus \setminus \smallsetminus | \(\cap \bigcap \cup \bigcup \biguplus \setminus \smallsetminus\,\!\) |
| \sqsubset \sqsubseteq \sqsupset \sqsupseteq \sqcap \sqcup \bigsqcup | \(\sqsubset \sqsubseteq \sqsupset \sqsupseteq \sqcap \sqcup \bigsqcup\,\!\) |
Operators | |
| + \oplus \bigoplus \pm \mp - | \(+ \oplus \bigoplus \pm \mp - \,\!\) |
| \times \otimes \bigotimes \cdot \circ \bullet \bigodot | \(\times \otimes \bigotimes \cdot \circ \bullet \bigodot\,\!\) |
| \star * / \div \frac{1}{2} | \(\star * / \div \frac{1}{2}\,\!\) |
Logic | |
| \land \wedge \bigwedge \bar{q} \to p | \(\land \wedge \bigwedge \bar{q} \to p\,\!\) |
| \lor \vee \bigvee \lnot \neg q \And | \(\lor \vee \bigvee \lnot \neg q \And\,\!\) |
Root | |
| \sqrt{2} \sqrt[n]{x} | \(\sqrt{2} \sqrt[n]{x}\,\!\) |
Relations | |
| \sim \approx \simeq \cong \dot= | \(\sim \approx \simeq \cong \dot=\) |
| \le < \ll \gg \ge > \equiv \not\equiv \ne \mbox{or} \neq \propto | \(\le < \ll \gg \ge > \equiv \not\equiv \ne \mbox{or} \neq \propto\,\!\) |
Geometric | |
| \Diamond \Box \triangle \angle \perp \mid \nmid \| 45^\circ | \(\Diamond \, \Box \, \triangle \, \angle \perp \, \mid \; \nmid \, \| 45^\circ\,\!\) |
Arrows | |
| \leftarrow \gets \rightarrow \to \not\to \leftrightarrow \longleftarrow \longrightarrow | \(\leftarrow \gets \rightarrow \to \not\to \leftrightarrow \longleftarrow \longrightarrow\,\!\) |
| \mapsto \longmapsto \hookrightarrow \hookleftarrow \nearrow \searrow \swarrow \nwarrow | \(\mapsto \longmapsto \hookrightarrow \hookleftarrow \nearrow \searrow \swarrow \nwarrow\,\!\) |
| \uparrow \downarrow \updownarrow \rightharpoonup \rightharpoondown \leftharpoonup \leftharpoondown \upharpoonleft | \(\uparrow \downarrow \updownarrow \rightharpoonup \rightharpoondown \leftharpoonup \leftharpoondown \upharpoonleft\,\!\) |
| \upharpoonright \downharpoonleft \downharpoonright \rightleftharpoons \Leftarrow \Rightarrow \Leftrightarrow \Longleftarrow | \(\upharpoonright \downharpoonleft \downharpoonright \rightleftharpoons \Leftarrow \Rightarrow \Leftrightarrow \Longleftarrow\,\!\) |
Special | |
| \eth \S \P \% \dagger \ddagger \ldots \cdots | \(\eth \S \P \% \dagger \ddagger \ldots \cdots\,\!\) |
| \smile \frown \wr \triangleleft \triangleright \infty \bot \top | \(\smile \frown \wr \triangleleft \triangleright \infty \bot \top\,\!\) |
| \vdash \vDash \Vdash \models \lVert \rVert \imath \hbar | \(\vdash \vDash \Vdash \models \lVert \rVert \imath \hbar\,\!\) |
| \ell \mho \Finv \Re \Im \wp \complement \diamondsuit | \(\ell \mho \Finv \Re \Im \wp \complement \diamondsuit\,\!\) |
| \heartsuit \clubsuit \spadesuit \Game \flat \natural \sharp | \(\heartsuit \clubsuit \spadesuit \Game \flat \natural \sharp\,\!\) |
Subscripts, superscripts, integrals
| Feature | Syntax | How it looks rendered | |
|---|---|---|---|
| HTML | PNG | ||
| Superscript | a^2 | \(a^2\) | \(a^2 \,\!\) |
| Subscript | a_2 | \(a_2\) | \(a_2 \,\!\) |
| Grouping | a^{2+2} | \(a^{2+2}\) | \(a^{2+2}\,\!\) |
| a_{i,j} | \(a_{i,j}\) | \(a_{i,j}\,\!\) | |
| Combining sub & super | x_2^3 | \(x_2^3\) | |
| {}_1^2\!\Omega_3^4 | \({}_1^2\!\Omega_3^4\) | ||
| Stacking | \stackrel{\alpha}{\omega} | \(\stackrel{\alpha}{\omega}\) | |
| Derivative (forced PNG) | x', y, f', f\! | \(x', y'', f', f''\!\) | |
| Derivative (f in italics may overlap primes in HTML) | x', y, f', f | \(x', y'', f', f''\) | \(x', y'', f', f''\!\) |
| Derivative (wrong in HTML) | x^\prime, y^{\prime\prime} | \(x^\prime, y^{\prime\prime}\) | \(x^\prime, y^{\prime\prime}\,\!\) |
| Derivative (wrong in PNG) | x\prime, y\prime\prime | \(x\prime, y\prime\prime\) | \(x\prime, y\prime\prime\,\!\) |
| Derivative dots | \dot{x}, \ddot{x} | \(\dot{x}, \ddot{x}\) | |
| Underlines, overlines, vectors | \hat a \ \bar b \ \vec c | \(\hat a \ \bar b \ \vec c\) | |
| \overrightarrow{a b} \ \overleftarrow{c d} \ \widehat{d e f} | \(\overrightarrow{a b} \ \overleftarrow{c d} \ \widehat{d e f}\) | ||
| \overline{g h i} \ \underline{j k l} | \(\overline{g h i} \ \underline{j k l}\) | ||
| Overbraces | \overbrace{ 1+2+\cdots+100 }^{5050} | \(\overbrace{ 1+2+\cdots+100 }^{5050}\) | |
| Underbraces | \underbrace{ a+b+\cdots+z }_{26} | \(\underbrace{ a+b+\cdots+z }_{26}\) | |
| Sum | \sum_{k=1}^N k^2 | \(\sum_{k=1}^N k^2\) | |
| Sum (force \textstyle) | \textstyle \sum_{k=1}^N k^2 | \(\textstyle \sum_{k=1}^N k^2\) | |
| Product | \prod_{i=1}^N x_i | \(\prod_{i=1}^N x_i\) | |
| Product (force \textstyle) | \textstyle \prod_{i=1}^N x_i | \(\textstyle \prod_{i=1}^N x_i\) | |
| Coproduct | \coprod_{i=1}^N x_i | \(\coprod_{i=1}^N x_i\) | |
| Coproduct (force \textstyle) | \textstyle \coprod_{i=1}^N x_i | \(\textstyle \coprod_{i=1}^N x_i\) | |
| Limit | \lim_{n \to \infty}x_n | \(\lim_{n \to \infty}x_n\) | |
| Limit (force \textstyle) | \textstyle \lim_{n \to \infty}x_n | \(\textstyle \lim_{n \to \infty}x_n\) | |
| Integral | \int_{-N}^{N} e^x\, dx | \(\int_{-N}^{N} e^x\, dx\) | |
| Integral (force \textstyle) | \textstyle \int_{-N}^{N} e^x\, dx | \(\textstyle \int_{-N}^{N} e^x\, dx\) | |
| Double integral | \iint_{D}^{W} \, dx\,dy | \(\iint_{D}^{W} \, dx\,dy\) | |
| Triple integral | \iiint_{E}^{V} \, dx\,dy\,dz | \(\iiint_{E}^{V} \, dx\,dy\,dz\) | |
| Quadruple integral | \iiiint_{F}^{U} \, dx\,dy\,dz\,dt | \(\iiiint_{F}^{U} \, dx\,dy\,dz\,dt\) | |
| Path integral | \oint_{C} x^3\, dx + 4y^2\, dy | \(\oint_{C} x^3\, dx + 4y^2\, dy\) | |
| Intersections | \bigcap_1^{n} p | \(\bigcap_1^{n} p\) | |
| Unions | \bigcup_1^{k} p | \(\bigcup_1^{k} p\) | |
Fractions, matrices, multilines
| Feature | Syntax | How it looks rendered |
|---|---|---|
| Fractions | \frac{2}{4}=0.5 |
\(\frac{2}{4}=0.5\) |
| Large (nestled) Fractions | \cfrac{2}{c + \cfrac{2}{d + \cfrac{2}{4}}} = a |
\(\cfrac{2}{c + \cfrac{2}{d + \cfrac{2}{4}}} = a\) |
| Matrices | \begin{matrix}
x & y \\
z & v
\end{matrix} |
\(\begin{matrix} x & y \\ z & v \end{matrix}\) |
\begin{vmatrix}
x & y \\
z & v
\end{vmatrix} |
\(\begin{vmatrix} x & y \\ z & v \end{vmatrix}\) | |
\begin{Vmatrix}
x & y \\
z & v
\end{Vmatrix} |
\(\begin{Vmatrix} x & y \\ z & v \end{Vmatrix}\) | |
\begin{bmatrix}
0 & \cdots & 0 \\
\vdots & \ddots & \vdots \\
0 & \cdots & 0
\end{bmatrix} |
\(\begin{bmatrix} 0 & \cdots & 0 \\ \vdots & \ddots & \vdots \\ 0 & \cdots & 0\end{bmatrix} \) | |
\begin{Bmatrix}
x & y \\
z & v
\end{Bmatrix} |
\(\begin{Bmatrix} x & y \\ z & v \end{Bmatrix}\) | |
\begin{pmatrix}
x & y \\
z & v
\end{pmatrix} |
\(\begin{pmatrix} x & y \\ z & v \end{pmatrix}\) | |
| Case distinctions |
f(n) =
\begin{cases}
n/2, & \mbox{if }n\mbox{ is even} \\
3n+1, & \mbox{if }n\mbox{ is odd}
\end{cases} |
\(f(n) = \begin{cases} n/2, & \mbox{if }n\mbox{ is even} \\ 3n+1, & \mbox{if }n\mbox{ is odd} \end{cases} \) |
| Multiline equations (must define number of colums used ({lcr}) (should not be used unless needed) |
\begin{array}{lcl}
f(n+1) & = & (n+1)^2 \\
& = & n^2 + 2n + 1
\end{array} |
\(\begin{array}{lll} f(n+1) & = & (n+1)^2 \\ & = & n^2 + 2n + 1 \end{array}\) |
| Multiline equations (more) |
\begin{array}{lcr}
f(x) & = & x^2 + 2x + 1 \\
f(n+1) & = & (n+1)^2 + 2(n+1) + 1
\end{array} |
\(\begin{array}{lcr} f(x) & = & x^2 + 2x + 1 \\ f(n+1) & = & (n+1)^2 + 2(n+1) + 1 \end{array}\) |
| Breaking up a long expression so that it wraps when necessary |
<math>f(x) \,\!</math>
<math>= \sum_{n=0}^\infty a_n x^n </math>
<math>= a_0 + a_1 x + a_2 x^2 + a_3 x^3 + \cdots</math>
|
\(f(x) \,\!\)\(= \sum_{n=0}^\infty a_n x^n \)\(= a_0 + a_1 x + a_2 x^2 + a_3 x^3 + \cdots\) |
| Simultaneous equations | \begin{cases}
3 x + 5 y + z \\
7 x - 2 y + 4 z \\
-6 x + 3 y + 2 z
\end{cases} |
\(\begin{cases} 3 x + 5 y + z \\ 7 x - 2 y + 4 z \\ -6 x + 3 y + 2 z \end{cases}\) |
Alphabets and typefaces
| Greek alphabet | |
|---|---|
\Alpha \Beta \Gamma \Delta \Epsilon \Zeta |
\(\Alpha \Beta \Gamma \Delta \Epsilon \Zeta \,\!\) |
\Eta \Theta \Iota \Kappa \Lambda \Mu |
\(\Eta \Theta \Iota \Kappa \Lambda \Mu \,\!\) |
\Nu \Xi \Pi \Rho \Sigma \Tau |
\(\Nu \Xi \Pi \Rho \Sigma \Tau\,\!\) |
\Upsilon \Phi \Chi \Psi \Omega |
\(\Upsilon \Phi \Chi \Psi \Omega \,\!\) |
\alpha \beta \gamma \delta \epsilon \zeta |
\(\alpha \beta \gamma \delta \epsilon \zeta \,\!\) |
\eta \theta \iota \kappa \lambda \mu |
\(\eta \theta \iota \kappa \lambda \mu \,\!\) |
\nu \xi \pi \rho \sigma \tau |
\(\nu \xi \pi \rho \sigma \tau \,\!\) |
\upsilon \phi \chi \psi \omega |
\(\upsilon \phi \chi \psi \omega \,\!\) |
\varepsilon \digamma \vartheta \varkappa |
\(\varepsilon \digamma \vartheta \varkappa \,\!\) |
\varpi \varrho \varsigma \varphi |
\(\varpi \varrho \varsigma \varphi\,\!\) |
| Blackboard Bold/Scripts | |
\mathbb{A} \mathbb{B} \mathbb{C} \mathbb{D} \mathbb{E} \mathbb{F} \mathbb{G}
|
\(\mathbb{A} \mathbb{B} \mathbb{C} \mathbb{D} \mathbb{E} \mathbb{F} \mathbb{G} \,\!\) |
\mathbb{H} \mathbb{I} \mathbb{J} \mathbb{K} \mathbb{L} \mathbb{M}
|
\(\mathbb{H} \mathbb{I} \mathbb{J} \mathbb{K} \mathbb{L} \mathbb{M} \,\!\) |
\mathbb{N} \mathbb{O} \mathbb{P} \mathbb{Q} \mathbb{R} \mathbb{S} \mathbb{T}
|
\(\mathbb{N} \mathbb{O} \mathbb{P} \mathbb{Q} \mathbb{R} \mathbb{S} \mathbb{T} \,\!\) |
\mathbb{U} \mathbb{V} \mathbb{W} \mathbb{X} \mathbb{Y} \mathbb{Z}
|
\(\mathbb{U} \mathbb{V} \mathbb{W} \mathbb{X} \mathbb{Y} \mathbb{Z}\,\!\) |
| boldface (vectors) | |
\mathbf{A} \mathbf{B} \mathbf{C} \mathbf{D} \mathbf{E} \mathbf{F} \mathbf{G}
|
\(\mathbf{A} \mathbf{B} \mathbf{C} \mathbf{D} \mathbf{E} \mathbf{F} \mathbf{G} \,\!\) |
\mathbf{H} \mathbf{I} \mathbf{J} \mathbf{K} \mathbf{L} \mathbf{M}
|
\(\mathbf{H} \mathbf{I} \mathbf{J} \mathbf{K} \mathbf{L} \mathbf{M} \,\!\) |
\mathbf{N} \mathbf{O} \mathbf{P} \mathbf{Q} \mathbf{R} \mathbf{S} \mathbf{T}
|
\(\mathbf{N} \mathbf{O} \mathbf{P} \mathbf{Q} \mathbf{R} \mathbf{S} \mathbf{T} \,\!\) |
\mathbf{U} \mathbf{V} \mathbf{W} \mathbf{X} \mathbf{Y} \mathbf{Z}
|
\(\mathbf{U} \mathbf{V} \mathbf{W} \mathbf{X} \mathbf{Y} \mathbf{Z} \,\!\) |
\mathbf{a} \mathbf{b} \mathbf{c} \mathbf{d} \mathbf{e} \mathbf{f} \mathbf{g}
|
\(\mathbf{a} \mathbf{b} \mathbf{c} \mathbf{d} \mathbf{e} \mathbf{f} \mathbf{g} \,\!\) |
\mathbf{h} \mathbf{i} \mathbf{j} \mathbf{k} \mathbf{l} \mathbf{m}
|
\(\mathbf{h} \mathbf{i} \mathbf{j} \mathbf{k} \mathbf{l} \mathbf{m} \,\!\) |
\mathbf{n} \mathbf{o} \mathbf{p} \mathbf{q} \mathbf{r} \mathbf{s} \mathbf{t}
|
\(\mathbf{n} \mathbf{o} \mathbf{p} \mathbf{q} \mathbf{r} \mathbf{s} \mathbf{t} \,\!\) |
\mathbf{u} \mathbf{v} \mathbf{w} \mathbf{x} \mathbf{y} \mathbf{z}
|
\(\mathbf{u} \mathbf{v} \mathbf{w} \mathbf{x} \mathbf{y} \mathbf{z} \,\!\) |
\mathbf{0} \mathbf{1} \mathbf{2} \mathbf{3} \mathbf{4}
|
\(\mathbf{0} \mathbf{1} \mathbf{2} \mathbf{3} \mathbf{4} \,\!\) |
\mathbf{5} \mathbf{6} \mathbf{7} \mathbf{8} \mathbf{9}
|
\(\mathbf{5} \mathbf{6} \mathbf{7} \mathbf{8} \mathbf{9}\,\!\) |
| Boldface (greek) | |
\boldsymbol{\Alpha} \boldsymbol{\Beta} \boldsymbol{\Gamma} \boldsymbol{\Delta} \boldsymbol{\Epsilon} \boldsymbol{\Zeta}
|
\(\boldsymbol{\Alpha} \boldsymbol{\Beta} \boldsymbol{\Gamma} \boldsymbol{\Delta} \boldsymbol{\Epsilon} \boldsymbol{\Zeta} \,\!\) |
\boldsymbol{\Eta} \boldsymbol{\Theta} \boldsymbol{\Iota} \boldsymbol{\Kappa} \boldsymbol{\Lambda} \boldsymbol{\Mu}
|
\(\boldsymbol{\Eta} \boldsymbol{\Theta} \boldsymbol{\Iota} \boldsymbol{\Kappa} \boldsymbol{\Lambda} \boldsymbol{\Mu}\,\!\) |
\boldsymbol{\Nu} \boldsymbol{\Xi} \boldsymbol{\Pi} \boldsymbol{\Rho} \boldsymbol{\Sigma} \boldsymbol{\Tau}
|
\(\boldsymbol{\Nu} \boldsymbol{\Xi} \boldsymbol{\Pi} \boldsymbol{\Rho} \boldsymbol{\Sigma} \boldsymbol{\Tau}\,\!\) |
\boldsymbol{\Upsilon} \boldsymbol{\Phi} \boldsymbol{\Chi} \boldsymbol{\Psi} \boldsymbol{\Omega}
|
\(\boldsymbol{\Upsilon} \boldsymbol{\Phi} \boldsymbol{\Chi} \boldsymbol{\Psi} \boldsymbol{\Omega}\,\!\) |
\boldsymbol{\alpha} \boldsymbol{\beta} \boldsymbol{\gamma} \boldsymbol{\delta} \boldsymbol{\epsilon} \boldsymbol{\zeta}
|
\(\boldsymbol{\alpha} \boldsymbol{\beta} \boldsymbol{\gamma} \boldsymbol{\delta} \boldsymbol{\epsilon} \boldsymbol{\zeta}\,\!\) |
\boldsymbol{\eta} \boldsymbol{\theta} \boldsymbol{\iota} \boldsymbol{\kappa} \boldsymbol{\lambda} \boldsymbol{\mu}
|
\(\boldsymbol{\eta} \boldsymbol{\theta} \boldsymbol{\iota} \boldsymbol{\kappa} \boldsymbol{\lambda} \boldsymbol{\mu}\,\!\) |
\boldsymbol{\nu} \boldsymbol{\xi} \boldsymbol{\pi} \boldsymbol{\rho} \boldsymbol{\sigma} \boldsymbol{\tau}
|
\(\boldsymbol{\nu} \boldsymbol{\xi} \boldsymbol{\pi} \boldsymbol{\rho} \boldsymbol{\sigma} \boldsymbol{\tau}\,\!\) |
\boldsymbol{\upsilon} \boldsymbol{\phi} \boldsymbol{\chi} \boldsymbol{\psi} \boldsymbol{\omega}
|
\(\boldsymbol{\upsilon} \boldsymbol{\phi} \boldsymbol{\chi} \boldsymbol{\psi} \boldsymbol{\omega}\,\!\) |
\boldsymbol{\varepsilon} \boldsymbol{\digamma} \boldsymbol{\vartheta} \boldsymbol{\varkappa}
|
\(\boldsymbol{\varepsilon} \boldsymbol{\digamma} \boldsymbol{\vartheta} \boldsymbol{\varkappa} \,\!\) |
\boldsymbol{\varpi} \boldsymbol{\varrho} \boldsymbol{\varsigma} \boldsymbol{\varphi}
|
\(\boldsymbol{\varpi} \boldsymbol{\varrho} \boldsymbol{\varsigma} \boldsymbol{\varphi}\,\!\) |
| Italics | |
\mathit{A} \mathit{B} \mathit{C} \mathit{D} \mathit{E} \mathit{F} \mathit{G}
|
\(\mathit{A} \mathit{B} \mathit{C} \mathit{D} \mathit{E} \mathit{F} \mathit{G} \,\!\) |
\mathit{H} \mathit{I} \mathit{J} \mathit{K} \mathit{L} \mathit{M}
|
\(\mathit{H} \mathit{I} \mathit{J} \mathit{K} \mathit{L} \mathit{M} \,\!\) |
\mathit{N} \mathit{O} \mathit{P} \mathit{Q} \mathit{R} \mathit{S} \mathit{T}
|
\(\mathit{N} \mathit{O} \mathit{P} \mathit{Q} \mathit{R} \mathit{S} \mathit{T} \,\!\) |
\mathit{U} \mathit{V} \mathit{W} \mathit{X} \mathit{Y} \mathit{Z}
|
\(\mathit{U} \mathit{V} \mathit{W} \mathit{X} \mathit{Y} \mathit{Z} \,\!\) |
\mathit{a} \mathit{b} \mathit{c} \mathit{d} \mathit{e} \mathit{f} \mathit{g}
|
\(\mathit{a} \mathit{b} \mathit{c} \mathit{d} \mathit{e} \mathit{f} \mathit{g} \,\!\) |
\mathit{h} \mathit{i} \mathit{j} \mathit{k} \mathit{l} \mathit{m}
|
\(\mathit{h} \mathit{i} \mathit{j} \mathit{k} \mathit{l} \mathit{m} \,\!\) |
\mathit{n} \mathit{o} \mathit{p} \mathit{q} \mathit{r} \mathit{s} \mathit{t}
|
\(\mathit{n} \mathit{o} \mathit{p} \mathit{q} \mathit{r} \mathit{s} \mathit{t} \,\!\) |
\mathit{u} \mathit{v} \mathit{w} \mathit{x} \mathit{y} \mathit{z}
|
\(\mathit{u} \mathit{v} \mathit{w} \mathit{x} \mathit{y} \mathit{z} \,\!\) |
\mathit{0} \mathit{1} \mathit{2} \mathit{3} \mathit{4}
|
\(\mathit{0} \mathit{1} \mathit{2} \mathit{3} \mathit{4} \,\!\) |
\mathit{5} \mathit{6} \mathit{7} \mathit{8} \mathit{9}
|
\(\mathit{5} \mathit{6} \mathit{7} \mathit{8} \mathit{9}\,\!\) |
| Roman typeface | |
\mathrm{A} \mathrm{B} \mathrm{C} \mathrm{D} \mathrm{E} \mathrm{F} \mathrm{G}
|
\(\mathrm{A} \mathrm{B} \mathrm{C} \mathrm{D} \mathrm{E} \mathrm{F} \mathrm{G} \,\!\) |
\mathrm{H} \mathrm{I} \mathrm{J} \mathrm{K} \mathrm{L} \mathrm{M}
|
\(\mathrm{H} \mathrm{I} \mathrm{J} \mathrm{K} \mathrm{L} \mathrm{M} \,\!\) |
\mathrm{N} \mathrm{O} \mathrm{P} \mathrm{Q} \mathrm{R} \mathrm{S} \mathrm{T}
|
\(\mathrm{N} \mathrm{O} \mathrm{P} \mathrm{Q} \mathrm{R} \mathrm{S} \mathrm{T} \,\!\) |
\mathrm{U} \mathrm{V} \mathrm{W} \mathrm{X} \mathrm{Y} \mathrm{Z}
|
\(\mathrm{U} \mathrm{V} \mathrm{W} \mathrm{X} \mathrm{Y} \mathrm{Z} \,\!\) |
\mathrm{a} \mathrm{b} \mathrm{c} \mathrm{d} \mathrm{e} \mathrm{f} \mathrm{g}
|
\(\mathrm{a} \mathrm{b} \mathrm{c} \mathrm{d} \mathrm{e} \mathrm{f} \mathrm{g}\,\!\) |
\mathrm{h} \mathrm{i} \mathrm{j} \mathrm{k} \mathrm{l} \mathrm{m}
|
\(\mathrm{h} \mathrm{i} \mathrm{j} \mathrm{k} \mathrm{l} \mathrm{m} \,\!\) |
\mathrm{n} \mathrm{o} \mathrm{p} \mathrm{q} \mathrm{r} \mathrm{s} \mathrm{t}
|
\(\mathrm{n} \mathrm{o} \mathrm{p} \mathrm{q} \mathrm{r} \mathrm{s} \mathrm{t} \,\!\) |
\mathrm{u} \mathrm{v} \mathrm{w} \mathrm{x} \mathrm{y} \mathrm{z}
|
\(\mathrm{u} \mathrm{v} \mathrm{w} \mathrm{x} \mathrm{y} \mathrm{z} \,\!\) |
\mathrm{0} \mathrm{1} \mathrm{2} \mathrm{3} \mathrm{4}
|
\(\mathrm{0} \mathrm{1} \mathrm{2} \mathrm{3} \mathrm{4} \,\!\) |
\mathrm{5} \mathrm{6} \mathrm{7} \mathrm{8} \mathrm{9}
|
\(\mathrm{5} \mathrm{6} \mathrm{7} \mathrm{8} \mathrm{9}\,\!\) |
| Fraktur typeface | |
\mathfrak{A} \mathfrak{B} \mathfrak{C} \mathfrak{D} \mathfrak{E} \mathfrak{F} \mathfrak{G}
|
\(\mathfrak{A} \mathfrak{B} \mathfrak{C} \mathfrak{D} \mathfrak{E} \mathfrak{F} \mathfrak{G} \,\!\) |
\mathfrak{H} \mathfrak{I} \mathfrak{J} \mathfrak{K} \mathfrak{L} \mathfrak{M}
|
\(\mathfrak{H} \mathfrak{I} \mathfrak{J} \mathfrak{K} \mathfrak{L} \mathfrak{M} \,\!\) |
\mathfrak{N} \mathfrak{O} \mathfrak{P} \mathfrak{Q} \mathfrak{R} \mathfrak{S} \mathfrak{T}
|
\(\mathfrak{N} \mathfrak{O} \mathfrak{P} \mathfrak{Q} \mathfrak{R} \mathfrak{S} \mathfrak{T} \,\!\) |
\mathfrak{U} \mathfrak{V} \mathfrak{W} \mathfrak{X} \mathfrak{Y} \mathfrak{Z}
|
\(\mathfrak{U} \mathfrak{V} \mathfrak{W} \mathfrak{X} \mathfrak{Y} \mathfrak{Z} \,\!\) |
\mathfrak{a} \mathfrak{b} \mathfrak{c} \mathfrak{d} \mathfrak{e} \mathfrak{f} \mathfrak{g}
|
\(\mathfrak{a} \mathfrak{b} \mathfrak{c} \mathfrak{d} \mathfrak{e} \mathfrak{f} \mathfrak{g} \,\!\) |
\mathfrak{h} \mathfrak{i} \mathfrak{j} \mathfrak{k} \mathfrak{l} \mathfrak{m}
|
\(\mathfrak{h} \mathfrak{i} \mathfrak{j} \mathfrak{k} \mathfrak{l} \mathfrak{m} \,\!\) |
\mathfrak{n} \mathfrak{o} \mathfrak{p} \mathfrak{q} \mathfrak{r} \mathfrak{s} \mathfrak{t}
|
\(\mathfrak{n} \mathfrak{o} \mathfrak{p} \mathfrak{q} \mathfrak{r} \mathfrak{s} \mathfrak{t} \,\!\) |
\mathfrak{u} \mathfrak{v} \mathfrak{w} \mathfrak{x} \mathfrak{y} \mathfrak{z}
|
\(\mathfrak{u} \mathfrak{v} \mathfrak{w} \mathfrak{x} \mathfrak{y} \mathfrak{z} \,\!\) |
\mathfrak{0} \mathfrak{1} \mathfrak{2} \mathfrak{3} \mathfrak{4}
|
\(\mathfrak{0} \mathfrak{1} \mathfrak{2} \mathfrak{3} \mathfrak{4} \,\!\) |
\mathfrak{5} \mathfrak{6} \mathfrak{7} \mathfrak{8} \mathfrak{9}
|
\(\mathfrak{5} \mathfrak{6} \mathfrak{7} \mathfrak{8} \mathfrak{9}\,\!\) |
| Calligraphy/Script | |
\mathcal{A} \mathcal{B} \mathcal{C} \mathcal{D} \mathcal{E} \mathcal{F} \mathcal{G}
|
\(\mathcal{A} \mathcal{B} \mathcal{C} \mathcal{D} \mathcal{E} \mathcal{F} \mathcal{G} \,\!\) |
\mathcal{H} \mathcal{I} \mathcal{J} \mathcal{K} \mathcal{L} \mathcal{M}
|
\(\mathcal{H} \mathcal{I} \mathcal{J} \mathcal{K} \mathcal{L} \mathcal{M} \,\!\) |
\mathcal{N} \mathcal{O} \mathcal{P} \mathcal{Q} \mathcal{R} \mathcal{S} \mathcal{T}
|
\(\mathcal{N} \mathcal{O} \mathcal{P} \mathcal{Q} \mathcal{R} \mathcal{S} \mathcal{T} \,\!\) |
\mathcal{U} \mathcal{V} \mathcal{W} \mathcal{X} \mathcal{Y} \mathcal{Z}
|
\(\mathcal{U} \mathcal{V} \mathcal{W} \mathcal{X} \mathcal{Y} \mathcal{Z}\,\!\) |
| Hebrew | |
\aleph \beth \gimel \daleth |
\(\aleph \beth \gimel \daleth\,\!\) |
| Feature | Syntax | How it looks rendered | |
|---|---|---|---|
| non-italicised characters | \mbox{abc} | \(\mbox{abc}\) | \(\mbox{abc} \,\!\) |
| mixed italics (bad) | \mbox{if} n \mbox{is even} | \(\mbox{if} n \mbox{is even}\) | \(\mbox{if} n \mbox{is even} \,\!\) |
| mixed italics (good) | \mbox{if }n\mbox{ is even} | \(\mbox{if }n\mbox{ is even}\) | \(\mbox{if }n\mbox{ is even} \,\!\) |
| mixed italics (more legible: ~ is a non-breaking space, while "\ " forces a space) | \mbox{if}~n\ \mbox{is even} | \(\mbox{if}~n\ \mbox{is even}\) | \(\mbox{if}~n\ \mbox{is even} \,\!\) |
Parenthesizing big expressions, brackets, bars
| Feature | Syntax | How it looks rendered |
|---|---|---|
| Bad | ( \frac{1}{2} ) | \(( \frac{1}{2} )\) |
| Good | \left ( \frac{1}{2} \right ) | \(\left ( \frac{1}{2} \right )\) |
You can use various delimiters with \left and \right:
| Feature | Syntax | How it looks rendered | |
|---|---|---|---|
| Parentheses | \left ( \frac{a}{b} \right ) | \(\left ( \frac{a}{b} \right )\) | |
| Brackets | \left [ \frac{a}{b} \right ] \quad \left \lbrack \frac{a}{b} \right \rbrack | \(\left [ \frac{a}{b} \right ] \quad \left \lbrack \frac{a}{b} \right \rbrack\) | |
| Braces | \left \{ \frac{a}{b} \right \} \quad \left \lbrace \frac{a}{b} \right \rbrace | \(\left \{ \frac{a}{b} \right \} \quad \left \lbrace \frac{a}{b} \right \rbrace\) | |
| Angle brackets | \left \langle \frac{a}{b} \right \rangle | \(\left \langle \frac{a}{b} \right \rangle\) | |
| Bars and double bars | \left | \frac{a}{b} \right \vert \left \Vert \frac{c}{d} \right \| | \(\left | \frac{a}{b} \right \vert \left \Vert \frac{c}{d} \right \|\) | |
| Floor and ceiling functions: | \left \lfloor \frac{a}{b} \right \rfloor \left \lceil \frac{c}{d} \right \rceil | \(\left \lfloor \frac{a}{b} \right \rfloor \left \lceil \frac{c}{d} \right \rceil\) | |
| Slashes and backslashes | \left / \frac{a}{b} \right \backslash | \(\left / \frac{a}{b} \right \backslash\) | |
| Up, down and up-down arrows | \left \uparrow \frac{a}{b} \right \downarrow \quad \left \Uparrow \frac{a}{b} \right \Downarrow \quad \left \updownarrow \frac{a}{b} \right \Updownarrow | \(\left \uparrow \frac{a}{b} \right \downarrow \quad \left \Uparrow \frac{a}{b} \right \Downarrow \quad \left \updownarrow \frac{a}{b} \right \Updownarrow\) | |
|
Delimiters can be mixed, |
\left [ 0,1 \right ) |
\(\left [ 0,1 \right )\) |
|
| Use \left. and \right. if you don't want a delimiter to appear: |
\left . \frac{A}{B} \right \} \to X | \(\left . \frac{A}{B} \right \} \to X\) | |
| Size of the delimiters | \big( \Big( \bigg( \Bigg( ... \Bigg] \bigg] \Big] \big] |
\(\big( \Big( \bigg( \Bigg( ... \Bigg] \bigg] \Big] \big]\) |
|
| \big\{ \Big\{ \bigg\{ \Bigg\{ ... \Bigg\rangle \bigg\rangle \Big\rangle \big\rangle |
\(\big\{ \Big\{ \bigg\{ \Bigg\{ ... \Bigg\rangle \bigg\rangle \Big\rangle \big\rangle\) |
||
| \big\| \Big\| \bigg\| \Bigg\| ... \Bigg| \bigg| \Big| \big| | \(\big\| \Big\| \bigg\| \Bigg\| ... \Bigg| \bigg| \Big| \big|\) | ||
| \big\lfloor \Big\lfloor \bigg\lfloor \Bigg\lfloor ... \Bigg\rceil \bigg\rceil \Big\rceil \big\rceil |
\(\big\lfloor \Big\lfloor \bigg\lfloor \Bigg\lfloor ... \Bigg\rceil \bigg\rceil \Big\rceil \big\rceil\) |
||
| \big\uparrow \Big\uparrow \bigg\uparrow \Bigg\uparrow ... \Bigg\Downarrow \bigg\Downarrow \Big\Downarrow \big\Downarrow |
\(\big\uparrow \Big\uparrow \bigg\uparrow \Bigg\uparrow ... \Bigg\Downarrow \bigg\Downarrow \Big\Downarrow \big\Downarrow\) |
||
| \big\updownarrow \Big\updownarrow \bigg\updownarrow \Bigg\updownarrow ... \Bigg\Updownarrow \bigg\Updownarrow \Big\Updownarrow \big\Updownarrow |
\(\big\updownarrow \Big\updownarrow \bigg\updownarrow \Bigg\updownarrow ... \Bigg\Updownarrow \bigg\Updownarrow \Big\Updownarrow \big\Updownarrow\) |
||
| \big / \Big / \bigg / \Bigg / ... \Bigg\backslash \bigg\backslash \Big\backslash \big\backslash |
\(\big / \Big / \bigg / \Bigg / ... \Bigg\backslash \bigg\backslash \Big\backslash \big\backslash\) |
||
Spacing
Note that TeX handles most spacing automatically, but you may sometimes want manual control.
| Feature | Syntax | How it looks rendered |
|---|---|---|
| double quad space | a \qquad b | \(a \qquad b\) |
| quad space | a \quad b | \(a \quad b\) |
| text space | a\ b | \(a\ b\) |
| text space without PNG conversion | a \mbox{ } b | \(a \mbox{ } b\) |
| large space | a\;b | \(a\;b\) |
| medium space | a\>b | [not supported] |
| small space | a\,b | \(a\,b\) |
| no space | ab | \(ab\,\) |
| small negative space | a\!b | \(a\!b\) |
Align with normal text flow
Due to the default css
img.tex { vertical-align: middle; }
an inline expression like \(\int_{-N}^{N} e^x\, dx\) should look good.
If you need to align it otherwise, use <font style="vertical-align:-100%;"><math>...</math></font> and play with the vertical-align argument until you get it right; however, how it looks may depend on the browser and the browser settings.
Also note that if you rely on this workaround, if/when the rendering on the server gets fixed in future releases, as a result of this extra manual offset your formulae will suddenly be aligned incorrectly. So use it sparingly, if at all.
Color
Equations can use color:
- {\color{Blue}x^2}+{\color{Brown}2x}-{\color{OliveGreen}1}
- \[{\color{Blue}x^2}+{\color{Brown}2x}-{\color{OliveGreen}1}\]
- x_{1,2}=\frac{-b\pm\sqrt{\color{Red}b^2-4ac}}{2a}
- \[x_{1,2}=\frac{-b\pm\sqrt{\color{Red}b^2-4ac}}{2a}\]
See here for all named colours supported by LaTeX.
Note that color should not be used as the only way to identify something because color blind people may not be able to distinguish between the two colors.
Examples
Quadratic Polynomial
\(ax^2 + bx + c = 0\)
<math>ax^2 + bx + c = 0</math>
Quadratic Formula
\(x=\frac{-b\pm\sqrt{b^2-4ac}}{2a}\)
<math>x=\frac{-b\pm\sqrt{b^2-4ac}}{2a}</math>
Tall Parentheses and Fractions
\(2 = \left( \frac{\left(3-x\right) \times 2}{3-x} \right)\)
<math>2 = \left( \frac{\left(3-x\right) \times 2}{3-x} \right)</math>
\(S_{new} = S_{old} + \frac{ \left( 5-T \right) ^2} {2}\)
<math>S_{new} = S_{old} + \frac{ \left( 5-T \right) ^2} {2}</math>
Integrals
\(\int_a^x \int_a^s f(y)\,dy\,ds = \int_a^x f(y)(x-y)\,dy\)
<math>\int_a^x \int_a^s f(y)\,dy\,ds = \int_a^x f(y)(x-y)\,dy</math>
Summation
\(\sum_{m=1}^\infty\sum_{n=1}^\infty\frac{m^2\,n}{3^m\left(m\,3^n+n\,3^m\right)}\)
<math>\sum_{m=1}^\infty\sum_{n=1}^\infty\frac{m^2\,n} {3^m\left(m\,3^n+n\,3^m\right)}</math>
Differential Equation
\(u'' + p(x)u' + q(x)u=f(x),\quad x>a\)
<math>u'' + p(x)u' + q(x)u=f(x),\quad x>a</math>
Complex numbers
\(|\bar{z}| = |z|, |(\bar{z})^n| = |z|^n, \arg(z^n) = n \arg(z)\,\)
<math>|\bar{z}| = |z|, |(\bar{z})^n| = |z|^n, \arg(z^n) = n \arg(z)\,</math>
Limits
\(\lim_{z\rightarrow z_0} f(z)=f(z_0)\,\)
<math>\lim_{z\rightarrow z_0} f(z)=f(z_0)\,</math>
Integral Equation
\(\phi_n(\kappa) = \frac{1}{4\pi^2\kappa^2} \int_0^\infty \frac{\sin(\kappa R)}{\kappa R} \frac{\partial}{\partial R}\left[R^2\frac{\partial D_n(R)}{\partial R}\right]\,dR\)
<math>\phi_n(\kappa) = \frac{1}{4\pi^2\kappa^2} \int_0^\infty
\frac{\sin(\kappa R)}{\kappa R} \frac{\partial}{\partial R}\left[R^2\frac{\partial
D_n(R)}{\partial R}\right]\,dR</math>
Example
\(\phi_n(\kappa) = 0.033C_n^2\kappa^{-11/3},\quad \frac{1}{L_0}\ll\kappa\ll\frac{1}{l_0}\,\)
<math>\phi_n(\kappa) =
0.033C_n^2\kappa^{-11/3},\quad \frac{1}{L_0}\ll\kappa\ll\frac{1}{l_0}\,</math>
Continuation and cases
\(f(x) = \begin{cases}1 & -1 \le x < 0 \\
\frac{1}{2} & x = 0 \\ 1 - x^2 & 0 < x \le 1\end{cases}\)
<math>f(x) = \begin{cases}1 & -1 \le x < 0 \\
\frac{1}{2} & x = 0 \\ 1 - x^2 & 0 < x\le 1\end{cases}</math>
Prefixed subscript
\({}_pF_q(a_1,...,a_p;c_1,...,c_q;z) = \sum_{n=0}^\infty \frac{(a_1)_n\cdot\cdot\cdot(a_p)_n}{(c_1)_n\cdot\cdot\cdot(c_q)_n}\frac{z^n}{n!}\,\)
<math>{}_pF_q(a_1,...,a_p;c_1,...,c_q;z) = \sum_{n=0}^\infty
\frac{(a_1)_n\cdot\cdot\cdot(a_p)_n}{(c_1)_n\cdot\cdot\cdot(c_q)_n}\frac{z^n}{n!}\,</math>
Acknowledgement
This page was modified from Wikipedia help page http://en.wikipedia.org/wiki/Help:Displaying_a_formula
Bug reports
Please, report bugs to the editor-in-chief.
External links
- A LaTeX tutorial. http://www.maths.tcd.ie/~dwilkins/LaTeXPrimer/
- A PDF document introducing TeX -- see page 39 onwards for a good introduction to the maths side of things: http://www.ctan.org/tex-archive/info/gentle/gentle.pdf
- A PDF document introducing LaTeX -- skip to page 59 for the math section. See page 72 for a complete reference list of symbols included in LaTeX and AMS-LaTeX. http://www.ctan.org/tex-archive/info/lshort/english/lshort.pdf
- TeX reference card: http://www.csit.fsu.edu/docs/tex/tex-refcard-letter.pdf
- http://www.ams.org/tex/amslatex.html
- A set of public domain fixed-size math symbol bitmaps: http://us.metamath.org/symbols/symbols.html


