Becchi-Rouet-Stora-Tyutin symmetry/Landau’s gauge free solutions

From Scholarpedia
Jump to: navigation, search

    Landau’s gauge free solutions

    Decomposing the vector potential in its physical and unphysical parts, \(A_\mu(x)=A^{(ph)}_\mu(x)+A^{(u)}_\mu(x)\), the general solution of electrodynamic equations in Landau’s gauge reads as follows \[ A^{(ph)}_\mu(x)=\int {d^4 k\over(2\pi)^{3/2}}e^{-ik\cdot x}\theta(k_0)\left[\delta(k^2)\sum_{h=\pm 1}\epsilon_\mu(\vec k, h) a(\vec k,h)\right]+ c.-c.\ , \] \[ A^{(u)}_\mu(x)=i\int {d^4 k\over(2\pi)^{3/2}}e^{-ik\cdot x}\theta(k_0)\left[\delta(k^2)\left(k_\mu\alpha(\vec k) -\bar k_\mu {\beta(\vec k)\over k\cdot\bar k}\right)- k_\mu\delta'(k^2)\beta(\vec k)\right]+ c.-c.\ , \] \[ b(x)=\int {d^4 k\over(2\pi)^{3/2}}e^{-ik\cdot x}\theta(k_0)\delta(k^2)\beta(\vec k)+ c.-c.\ \] where:

    • \(c.-c.\) means complex conjugate;
    • \(\delta(k^2)\) and \(\delta'(k^2)\) are Dirac's delta measure and its derivative;
    • \(\epsilon_\mu(\vec k, h)\) for \(h=\pm 1\) are space-like circular polarization vectors such that:
      • \(\epsilon\cdot k=\epsilon\cdot \bar k=0\),
      • \(\epsilon^*_\mu(\vec k, h)=\epsilon_\mu(-\vec k, h)\);
    • \(\bar k\) is the parity reflected image of \(k\).

    The polarization vectors define the unpolarized photon density matrix \[\sum_{h=\pm}\epsilon _\mu(\vec k, h)\epsilon^*_\nu(\vec k, h)=-g_{\mu\nu}+{k_\mu\bar k_\nu+\bar k_\mu k_\nu\over k\cdot\bar k}\ . \] It is easy to verify, using the identity \(x\delta'(x)=-\delta(x)\) and \(x\delta(x)=0\), that for a generic choice of the functions \(a\ ,\alpha\ ,\ \beta\) the above equations give the general solution to the Landau's gauge free field equations.

    Personal tools
    Namespaces

    Variants
    Actions
    Navigation
    Focal areas
    Activity
    Tools