Scholarpedia is supported by Brain Corporation
User:Jan A. Sanders/An introduction to Lie algebra cohomology/Lecture 7
Contents |
Spectral sequences
In the examples, one uses K^{p,n}=F^pC^n(\mathfrak{g},\mathfrak{a})\ , but in the construction of the spectral sequence one only assumes K^{p,n}\supset K^{p+1,n} and d^n K^{p,n}\subset K^{p,n+1}\ .
definition
Let Z_p^{r,n}=K^{p,n} for r\leq 0\ , Z_p^{r,n}=\{a_n\in K^{p,n}| d^n a_n\in K^{p+r,n+1}\} for r>0\ .
remark
If p>n then Z_p^{r,n}=0\ .
proposition
Z_0^{1,0}=\mathfrak{a}^\mathfrak{h}=H^0(\mathfrak{g},\mathfrak{a})\ , where \mathfrak{a}^\mathfrak{h} denote the \mathfrak{h}-invariant elements (under d_-^{(0)}) in \mathfrak{a}\ .
proof
a\in Z_0^{1,0} implies da \in F^1 C^1(\mathfrak{g},\mathfrak{a})\ , that is, for y\in\mathfrak{h} one has d_1(y)a=da(y)=0\ .
proposition
Z_1^{1,1} \subset F^1 C^1(\mathfrak{g},\mathfrak{a}^\mathfrak{h})
proof
a_1\in Z_1^{1,1} implies that for x\in\mathfrak{g}, y\in \mathfrak{h} one has, since d^1 a_1\in F^2 C^2(\mathfrak{g},\mathfrak{a})\ , 0=d^1a_1(x,y)=d_1(x)a_1(y)-d_1(y)a_1(x)-a_1([x,y])=-d_1(y)a_1(x)\ .
proposition
Z_{p+1}^{r-1,n}\subset Z_p^{r,n}
proof
Let a_n\in Z_{p+1}^{r-1,n}\ . Then a_n\in K^{p+1,n}\subset K^{p,n} and d^n a_n \in K^{p+r,n+1}\ . But this immediately implies that a_n\in Z_p^{r,n}\ .
proposition
d^{n-1} Z_{p-r+1}^{r-1,n-1}\subset Z_p^{r,n}
proof
Let a_{n}\in d^{n-1} Z_{p-r+1}^{r-1,n-1}\ .
Then one can write a_n as d^{n-1}a_{n-1}\ , with a_{n-1}\in Z_{p-r+1}^{r-1,n-1}\ , that is to say, a_{n-1}\in K^{p-r+1,n-1} and a_n=d^{n-1}a_{n-1}\in K^{p,n}\ .
Since d^na_n=d^n d^{n-1}a_{n-1}=0\ , it follows that a_n\in Z_p^{r,n}\ .
definition
E_p^{r,n}=Z_p^{r,n}/(d^{n-1} Z_{p-r+1}^{r-1,n-1}+Z_{p+1}^{r-1,n})
remark
In particular, E_p^{0,n}=Z_p^{0,n}/Z_{p+1}^{0,n}\ , that is, the graded version of the filtered sequence K^{p,n}\ .
theorem
On E_\cdot^{r,n} there is an induced coboundary operator \mathbf{d}^n such that H^p(E_\cdot^{r,n},\mathbf{d}^n)=E_p^{r+1,n} This means that E_\cdot^{r,n} is a spectral sequence.
proof
d^n maps Z_p^{r,n} to Z_{p+r}^{r,n+1} and d^{n-1} Z_{p-r+1}^{r-1,n-1}+Z_{p+1}^{r-1,n} to d^{n} Z_{p+1}^{r-1,n}\ .
Let [a_n]\in E_p^{r,n}\ . Define \mathbf{d}^n[a_n]=[d^n a_n] One has [d^n a_n]\in E_{p+r}^{r,n+1}\ . Suppose [a_n] is a cocycle. This means that d^na_n\in d^{n} Z_{p+1}^{r-1,n}+Z_{p+r+1}^{r-1,n+1}\ . That is, there exist \tilde{a}^n \in Z_{p+1}^{r-1,n} and a_{n+1}\in Z_{p+r+1}^{r-1,n+1} such that d^n a_n=d^n \tilde{a}^n+a_{n+1}\ . Let \bar{a}^n=a_n-\tilde{a}^n\in Z_p^{r,n}+Z_{p+1}^{r-1,n} \subset K^{p,n}\ , with d^n \bar{a}^n=a_{n+1}\in Z_{p+r+1}^{r-1,n+1}\in K^{p+r+1,n+1}\ .
Therefore \bar{a}^n \in Z_{p}^{r+1,n}\ .
This implies that a_n=\bar{a}^n+\tilde{a}^n\in Z_{p}^{r+1,n}+Z_{p+1}^{r-1,n}\ .
It follows that Z^p(E_\cdot^{r,n},\mathbf{d}^n)=(Z_{p}^{r+1,n}+Z_{p+1}^{r-1,n})/(d^{n-1} Z_{p-r+1}^{r-1,n-1}+Z_{p+1}^{r-1,n}) The p-coboundaries consist of the elements of d^{n-1} Z_{p-r}^{r,n-1}\ , and one has B^p(E_\cdot^{r,n},\mathbf{d}^n)=(d^{n-1} Z_{p-r}^{r,n-1}+Z_{p+1}^{r-1,n})/(d^{n-1} Z_{p-r+1}^{r-1,n-1}+Z_{p+1}^{r-1,n})
Noether isomorphism
If W\subset U then U/(W+U\cap V)\simeq (U+V)/(W+V) and (M/V)/(U/V)=M/U\ .
It follows that H^p(E_\cdot^{r,n},\mathbf{d}^n)=(Z_{p}^{r+1,n}+Z_{p+1}^{r-1,n})/(d^{n-1} Z_{p-r}^{r,n-1}+Z_{p+1}^{r-1,n})
proposition
d^{n-1} Z_{p-r}^{r,n-1}\subset Z_p^{r+1,n}\ .
proof
Let a_n \in d^{n-1} Z_{p-r}^{r,n-1}\ .
Then a_n=d^{n-1} a_{n-1} with a_{n-1}\in Z_{p-r}^{r,n-1}\ .
Therefore a_n\in Z_p^{r+1,n}\ , since d^n a_n=0.\square
It follows that H^p(E_\cdot^{r,n},\mathbf{d}^n)=Z_{p}^{r+1,n}/(d^{n-1} Z_{p-r}^{r,n-1}+Z_{p}^{r+1,n}\cap Z_{p+1}^{r-1,n})
proposition
Z_p^{r+1,n}\cap Z_{p+1}^{r-1,n}=Z_{p+1}^{r,n}\ .
proof
Let a_n\in Z_p^{r+1,n}\cap Z_{p+1}^{r-1,n}\ . Then a_n\in K^{p+1,n} and d^n a_n \in F^{p+r+1} C^{n+1}(\mathfrak{g},\mathfrak{a})\ .
This implies a_n\in Z_{p+1}^{r,n}\ .
On the other hand, if a_n\in Z_{p+1}^{r,n}\ , we have a_n\in K^{p+1,n}\subset F^p C^n(\mathfrak{g},\mathfrak{a}) and d^na_n \in K^{p+r+1,n+1}\subset K^{p+r,n+1}\ .
Thus, a_n \in K^{p,n} and d^na_n \in K^{p+r+1,n+1}\ , implying a_n\in Z_p^{r+1,n}\ .
Furthermore, a_n \in K^{p+1,n} and d^na_n \in K^{p+r,n+1}\ , implying a_n\in Z_{p+1}^{r-1,n}\ .
The result follows. \square
corollary
H^p(E_\cdot^{r,n},\mathbf{d}^n)=Z_{p}^{r+1,n}/(d^{n-1} Z_{p-r}^{r,n-1}+Z_{p+1}^{r,n})=E_p^{r+1,n} This proves the theorem.