Back to the eigth lecture
The Gerstenhaber bracket
The Gerstenhaber bracket was introduced in The cohomology structure of an associative ring and the following is entirely based on this paper, with some input from La renaissance des opérades, followed by examples from Cohomology of infinite-dimensional Lie algebras.
We write \mathfrak{x}_\alpha^\beta for x_\alpha,\cdots,x_{\alpha+\beta}\ .
definition - Gerstenhaber bracket
Let a\in C^k(\mathfrak{g},\mathfrak{g}) and b\in C^l(\mathfrak{g},\mathfrak{g})\ .
We write |a|=k-1\mod 2\ , and then wite a for |a|\ , since there can be no confusion.
Define for i=0,\dots,a
a\circ_i b (\mathfrak{x}_{s}^{a+b})=a(\mathfrak{x}_{s}^{i-1},b(\mathfrak{x}_{s+i}^{b}),\mathfrak{x}_{s+b+i+1}^{a-i-1}) ,
that is, the b is inserted at the position of x_{s+i}\ , and let
a\circ b =\sum_{i=0}^{a} (-1)^{ib}a\circ_{i} b
Then define the Gerstenhaber bracket [\cdot,\cdot]_{\mathcal{G}} by
[a,b]_{\mathcal{G}}=a\circ b-(-1)^{ab} b\circ a
proposition - super Lie algebra
This gives a super Lie algebra structure on C^\cdot(\mathfrak{g},\mathfrak{g})\ .
proof
First one shows that it is enough to have (writing xy for x\circ y)
\tag{1}
x[y,z]_{\mathcal{G}}=(x y)z-(-1)^{yz}(x z)y.
Indeed,
[[x,y]_{\mathcal{G}},z]_{\mathcal{G}}-[x,[y,z]_{\mathcal{G}}]_{\mathcal{G}}+(-1)^{xy}[y,[x,z]_{\mathcal{G}}]_{\mathcal{G}}=
=[x,y]_{\mathcal{G}}z-(-1)^{(x+y)z}z[x,y]_{\mathcal{G}}-x[y,z]_{\mathcal{G}}+(-1)^{x(y+z)}[y,z]_{\mathcal{G}}x+(-1)^{xy}y[x,z]_{\mathcal{G}}-(-1)^{yz}[x,z]_{\mathcal{G}}y
=(xy-(-1)^{xy}yx)z-(-1)^{(x+y)z}z[x,y]_{\mathcal{G}}-x[y,z]_{\mathcal{G}}+(-1)^{x(y+z)}(yz-(-1)^{yz}zy)x+(-1)^{xy}y[x,z]_{\mathcal{G}}-(-1)^{yz}(xz-(-1)^{xz}zx)y
=-(x[y,z]_{\mathcal{G}}-(xy)z+(-1)^{yz}(xz)y)+(-1)^{xy}(y[x,z]_{\mathcal{G}}-(yx)z+(-1)^{xz}(yz)x)-(-1)^{(x+y)z}(z[x,y]_{\mathcal{G}}-(zx)y+(-1)^{xy}(zy)x)
=0
Let the associator
\alpha\in C^3(\mathfrak{g},\mathfrak{g}) be defined by
\alpha(x,y,z)=x(
yz)-(xy)z
\ . Then Condition (
1) is written as
\alpha(x,y,z)=(-1)^{yz}\alpha(x,z,y) ,
that is, the associator is symmetric in its last two arguments.
Indeed, one has
\alpha(x,y,z)-(-1)^{yz}\alpha(x,z,y)=
=x(yz)-(xy)z-(-1)^{yz}(x(zy)-(xz)y)
=x[y,z]_\mathcal{G}-(xy)z+(-1)^{yz}(xz)y
One computes
\alpha(a,b,c)=a\circ (b\circ c)-(a\circ b)\circ c
=\sum_{i=0}^{ {a}} (-1)^{i({b}+{c})} a \circ_{i} (b\circ c)-\sum_{i=0}^{ {a}+{b} } (-1)^{i{c} }(a\circ b)\circ_{i} c
=\sum_{i=0}^{ {a}}\sum_{j=0}^b (-1)^{jc+i({b}+{c})} a \circ_{i} (b\circ_j c)-\sum_{i=0}^{a+b}\sum_{j=0}^a (-1)^{jb+i{c} }(a\circ_j b)\circ_{i} c
=\sum_{i=0}^{ {a}}(-1)^{ib}( \sum_{j=0}^b (-1)^{(j+i){c}} a \circ_{i} (b\circ_j c)- \sum_{j=0}^{i-1} (-1)^{j{c} }(a\circ_i b)\circ_{j} c
- \sum_{j=0}^{b} (-1)^{(i+j){c}}(a\circ_i b)\circ_{i+j} c - \sum_{j=i+1}^{ {a}} (-1)^{(b+j){c} }(a\circ_i b)\circ_{b+j} c )
lemma
(a\circ_i b)\circ_{j+b} c=(a\circ_j c)\circ_i b , \quad 0\leq i<j \leq a
proof
For 0\leq i<j \leq a one has
(a\circ_i b)\circ_{j+b} c(\mathfrak{x}_{0}^{ {a}+{b}+{c} })=
=(a\circ_i b)(\mathfrak{x}_{0}^{b+j-1},c(\mathfrak{x}_{b+j}^{c}),\mathfrak{x}_{b+c+j+1}^{a-j-1})
=a(\mathfrak{x}_{0}^{i-1},b(\mathfrak{x}_{i}^{b}),\mathfrak{x}_{b+i+1}^{j-i-2},c(\mathfrak{x}_{b+j}^{c}),\mathfrak{x}_{b+c+j+1}^{a-j-1})
=(a\circ_j c)(\mathfrak{x}_{0}^{i-1},b(\mathfrak{x}_{i}^{b}),\mathfrak{x}_{b+i+1}^{a+c-i-1})
=(a\circ_j c)\circ_i b(\mathfrak{x}_{0}^{ {a}+{b}+{c} })
lemma
(a\circ_i b)\circ_{i+j} c=a\circ_i( b\circ_j c) , \quad 0\leq i\leq a, 0\leq j\leq b
proof
For 0\leq i<j \leq a one has
(a\circ_i b)\circ_{i+j} c(\mathfrak{x}_{0}^{ {a}+{b}+{c} })=
=(a\circ_i b)(\mathfrak{x}_{0}^{i+j-1},c(\mathfrak{x}_{i+j}^{c}),\mathfrak{x}_{c+i+j+1}^{{a}+{b}-i-j-1})
=(a(\mathfrak{x}_{0}^{i-1},b(\mathfrak{x}_{i}^{j-1},c(\mathfrak{x}_{i+j}^{c}),\mathfrak{x}_{c+i+j+1}^{b-j-1}),\mathfrak{x}_{b+c+i+1}^{{a}-i-1})
=a\circ_i( b\circ_j c)(\mathfrak{x}_{0}^{ {a}+{b}+{c} })
It follows that
\alpha(a,b,c)=a\circ (b\circ c)-(a\circ b)\circ c=
=\sum_{i=0}^{ {a}}(-1)^{ib}( \sum_{j=0}^b (-1)^{(j+i){c}} a \circ_{i} (b\circ_j c)- \sum_{j=0}^{i-1} (-1)^{j{c}}(a\circ_i b)\circ_{j} c- \sum_{j=0}^{b} (-1)^{(i+j){c}}a\circ_i( b\circ_{j} c) - \sum_{j=i+1}^{ {a} } (-1)^{(b+j){c} }(a\circ_j c)\circ_{i} b )
=-\sum_{i=0}^{ {a}}(\sum_{j=0}^{i-1} (-1)^{ib}(-1)^{j{c}}(a\circ_i b)\circ_{j} c+ \sum_{j=i+1}^{ {a} } (-1)^{ib}(-1)^{(b+j){c} }(a\circ_j c)\circ_{i} b )
=-\sum_{i=0}^{ {a}} \sum_{j=0}^{i-1} (-1)^{ib}(-1)^{j{c}}(a\circ_i b)\circ_{j} c -\sum_{j=0}^{ {a}} \sum_{i=j+1}^{{a} } (-1)^{jb}(-1)^{(b+i){c} }(a\circ_i c)\circ_{j} b
=-\sum_{i=0}^{ {a}} \sum_{j=0}^{i-1} (-1)^{ib}(-1)^{j{c}}(a\circ_i b)\circ_{j} c -\sum_{i=0}^{ {a} } \sum_{j=0}^{i-1} (-1)^{jb}(-1)^{(b+i){c} }(a\circ_i c)\circ_{j} b
=(-1)^{bc} \alpha(a,c,b)
Observe that the Lie algebra is not necessarily a Poisson-Lie algebra, at least not with the present multiplication \circ\ . For this to happen we would need
[a\circ b,c]=a\circ [b,c]-[a,c]\circ b
but one finds
[a\circ b,c]=a\circ [b,c]-[a,c]\circ b+\alpha(c,a,b)
example: associative structure
Let a^2\in C^2(\mathfrak{g},\mathfrak{g}) be an associative structure, that is,
a^2(a^2(x,y),z)=a^2(x,a^2(y,z))
Then
[a^2,a^2]_{\mathcal{G}}(x_1,x_2,x_3)=2(a^2\circ a^2)(x_1,x_2,x_3)\ :
= 2a^2\circ_1 a^2 (x_1,x_2,x_3)-2a^2\circ_2 a^2 (x_1,x_2,x_3)\ :
= 2a^2(a^2(x_1,x_2),x_3)-2a^2(x_1,a^2(x^2,x^3))\ :
=0
The equation
[a^2,a^2]_{\mathcal{G}}=0 characterizes an associative structure.
Let
d^m b^m=[a^2,b^m]_{\mathcal{G}}
Then
d^{m+1} d^m b^m =d^{m+1} [a^2,b^m]_{\mathcal{G}} = [a^2,[a^2,b^m]_{\mathcal{G}}]_{\mathcal{G}} = \frac{1}{2} [[a^2,a^2]_{\mathcal{G}},b^m]_{\mathcal{G}} = 0
The complex
(C^\cdot(\mathfrak{g},\mathfrak{g}),d^\cdot) is called the
Hochschild complex.
One observes that
d^{k+l-1}[b^k,c^l]_{\mathcal{G}}=[a^2,[b^k,c^l]_{\mathcal{G}}]_{\mathcal{G}}\ :
=[[a^2,b^k]_{\mathcal{G}},c^l]_{\mathcal{G}}+(-1)^{k-1}[b^k,[a^2,c^l]_{\mathcal{G}}]_{\mathcal{G}}\ :
=[d^k b^k,c^l]_{\mathcal{G}}+(-1)^{k-1}[b^k,d^l c^l]_{\mathcal{G}}
This implies that the
Gerstenhaber bracket can be lifted to
H^\cdot(\mathfrak{g},\mathfrak{g})\ ,
since
Z^\cdot(\mathfrak{g},\mathfrak{g}) is a Lie subalgebra and
B^\cdot(\mathfrak{g},\mathfrak{g})
is an ideal in
Z^\cdot(\mathfrak{g},\mathfrak{g})\ .
the shuffled Gerstenhaber bracket
The following variation is possible. Define for i=1,\dots,k
a\hat{\circ}_i b =\sum_{\sigma\in\mathcal{S}_a^b}(-1)^{|\sigma|}( a\circ_i b)^\sigma
where \mathcal{S}_a^b is the group of permutations of the arguments,
in such a way that the order within a and b is preserved (shuffle) and the last argument is fixed, and where |\sigma| is the sign of the permutation.
So from the set x_0,\dots,x_{a+b-1} we take out b elements if i<a+b-1 and
b-1 elements if i=a+b-1 and put those in b\ . An example, with a.b
\in C^2(\mathfrak{g},\mathfrak{g})\ :
a\hat{\circ}_0 b(x_0,x_1,x_2)=a \circ_0 b (x_0,x_1,x_2) = a(b(x_0,x_1),x_2)
a\hat{\circ}_1 b(x_0,x_1,x_2)=a \circ_1 b (x_0,x_1,x_2)-a \circ_1 b (x_1,x_0,x_2)
=a(x_0,b(x_1,x_2))-a(x_1,b(x_0,x_2))
Let
a\hat{\circ} b =\sum_{i=0}^b (-1)^{ib}a\hat{\circ}_i b
Then define the shuffled Gerstenhaber bracket [\cdot,\cdot]_{\hat{\mathcal{G}}} by
[a,b]_{\hat{\mathcal{G}}}=a\hat{\circ} b-(-1)^{ab} b\hat{\circ} a
This again defines a super Lie algebra structure, but this needs proof.
lemma
(a\hat{\circ}_i b)\hat{\circ}_{j+b} c=(a\hat{\circ}_j c)\hat{\circ}_i b , \quad 0\leq i<j \leq a
proof
(a\hat{\circ}_i b)\hat{\circ}_{j+b} c)=
= \sum_{\sigma\in\mathcal{S}_{a+b}^c}(-1)^{|\sigma|}( (a\hat{\circ}_i b) \circ_{j+b} c)^\sigma
= \sum_{\sigma\in\mathcal{S}_{a+b}^c}\sum_{\pi\in\mathcal{S}_{a}^b}(-1)^{|\sigma|+|\pi|}( (a\circ_i b)
^\pi \circ_{j+b} c)^\sigma
The permutations
\pi and
\sigma give us a partition of
(A|B|C) of
(0,\dots,a+b+c)\ .
Using uniquely determined permutations
\hat{\pi}\in S_a^c (the inverse of joining
A
and
C)
and
\hat{\sigma}\in S_{a+c}^b (the inverse of joining the join of
A and
C with
B)
we can obtain the partition
(A|C|B)\ .
Thus we can write, using
Lemma,
(a\hat{\circ}_i b)\hat{\circ}_{j+b} c)=
= \sum_{\sigma\in\mathcal{S}_{a+b}^c}\sum_{\pi\in\mathcal{S}_{a}^b}(-1)^{|\sigma|+|\pi|}( (a\circ_i b)
^\pi \circ_{j+b} c)^\sigma
= \sum_{\hat{\sigma}\in\mathcal{S}_{a+c}^b}\sum_{\hat{\pi}\in\mathcal{S}_{a}^c}(-1)^{|\hat{\sigma}|+|\hat{\pi}|}( (a\circ_j c)^{\hat{\pi}} \circ_{i} b)^{\hat{\sigma }}
= (a\hat{\circ}_j c)\hat{\circ}_i b
lemma
(a\hat{\circ}_i b)\hat{\circ}_{i+j} c=a\hat{\circ}_i( b\hat{\circ}_j c) , \quad 0\leq i\leq a, 0\leq j
\leq b
proof
The permutations \pi\in S_a^b and \sigma\in S_{a+b}^c give us a partition of
(A|B|C) of (0,\dots,a+b+c)\ .
Using uniquely determined permutations \hat{\pi}\in S_b^c (the inverse of joining B and C)
and \hat{\sigma}\in S_{a}^{b+c} (the inverse of joining A with the join of B and C)
we can obtain the same partition
(A|B|C)\ .
The result follows from the
Lemma.
a Form [1] program to compute the shuffled Gerstenhaber bracket
Declaration of the global parameters
- #define k "2";
- #define l "2";
- #define N "{`k'+`l'-1}";
Declaration of the variables
- F f g h a b;
- S m n x1,...,x`N';
- Set var:x1,...,x`N';
Declaration of the sets
- Set prevar:x1,...,x{`N'-1};
- Set fun: g h;
- Set ffun: a b;
Start of the actual program
Now shuffle
- id f(?a)=distrib_(-1,`l',g,h,?a)-(-1)^((`k'-1)*(`l'-1))*distrib_(-1,`k',h,g,?a);
Insert a into b and move it to all different positions
- id g?fun(?a)*h?fun(?b)=h(g(?a),?b);
- repeat ;
- id h?fun[n?](?a,g?fun[m?](?b),x1?var,?c)=ffun[n](?a,ffun[m](?b),x1,?c)-(-1)^(nargs_(?b))*fun[n](?a,x1,fun[m](?b),?c);
- id h?fun[n?](?a,g?fun[m?](?b))=ffun[n](?a,ffun[m](?b));
- id h?ffun(?a,a?ffun(?b,x1?prevar))=0;
- id h?ffun(?a,a?ffun(?b),?c,x1?prevar)=0;
- endrepeat;
- .sort
- print;
- .end
The output of this run (with k=l=2) is
- F = a(b(x1,x2),x3)- a(x1,b(x2,x3))+ a(x2,b(x1,x3))+ b(a(x1,x2),x3)- b(x1,a(x2,x3))+ b(x2,a(x1,x3));
The computation with, for instance, k=l=9 takes a few seconds, but the answer is a bit too long to give here with its 208780 terms.
example: Lie algebra structure
Let a^2\in C_\wedge^2(\mathfrak{g},\mathfrak{g}) be a Lie algebra structure, that is,
a^2(a^2(x,y),z)=a^2(x,a^2(y,z))-a^2(y,a^2(x,z)
and
a^2 is antisymmetric.
Then
[a^2,a^2]_{\hat{\mathcal{G}}}(x_1,x_2,x_3)=2(a^2\hat{\circ} a^2)(x_1,x_2,x_3)\ :
= 2a^2\hat{\circ}_1 a^2 (x_1,x_2,x_3)-2a^2\hat{\circ}_2 a^2 (x_1,x_2,x_3)\ :
= 2a^2(a^2(x_1,x_2),x_3)-2a^2(x_1,a^2(x_2,x_3))+2a^2(x_2,a^2(x_1,x_3))\ :
=0
The equation
[a^2,a^2]_{\hat{\mathcal{G}}}=0 characterizes a Lie algebra structure.
Let
d^m b^m=[a^2,b^m]_{\hat{\mathcal{G}}}
Then
d^{m+1} d^m b^m =d^{m+1} [a^2,b^m]_{\hat{\mathcal{G}}}=[a^2,[a^2,b^m]_{\hat{\mathcal{G}}}]_{\hat{\mathcal{G}}}=\frac{1}{2}[[a^2,a^2]_{\hat{\mathcal{G}}},b^m]_{\hat{\mathcal{G}}}=0
The complex
(C_\wedge^\cdot(\mathfrak{g},\mathfrak{g}),d^\cdot) is called the
Lie algebra complex and
d^m is identical to the previous
d^m\ .
One observes that
d^{k+l-1}[b^k,c^l]_{\hat{\mathcal{G}}}=[a^2,[b^k,c^l]_{\hat{\mathcal{G}}}]_{\hat{\mathcal{G}}}\ :
=[[a^2,b^k]_{\hat{\mathcal{G}}},c^l]_{\hat{\mathcal{G}}}+(-1)^{k-1}[b^k,[a^2,c^l]_{\hat{\mathcal{G}}}]_{\hat{\mathcal{G}}}\ :
=[d^k b^k,c^l]_{\hat{\mathcal{G}}}+(-1)^{k-1}[b^k,d^l c^l]_{\hat{\mathcal{G}}}
This implies that the
shuffled Gerstenhaber bracket can be lifted to
H_\wedge^\cdot(\mathfrak{g},\mathfrak{g})\ .
Deformations
deformation of a Lie algebra
Let a_0^2 denote the bracket on \mathfrak{g}\ , that is,
a_0^2(x_1,x_2)=[x_1,x_2],\quad x_1,x_2\in\mathfrak{g}
A
formal deformation of a Lie algebra structure is a formal expression
a_\varepsilon^2=\sum_{i=0}^\infty \varepsilon^i a_i^2
such that
a_\varepsilon^2(x_1,x_2)=[x_1,x_2]_\varepsilon defines a Lie structure.
Writing out the terms of the Jacobi identity one obtains
\tag{2}
0=[[x_1,x_2]_\varepsilon,x_3]_\varepsilon- [x_1,[x_2,x_3]_\varepsilon]_\varepsilon+ [x_2,[x_1,x_3]_\varepsilon]_\varepsilon\ :
=\sum_{i=0}^\infty\sum_{j=0}^\infty \varepsilon^{i+j} \left( a_i^2(a_j^2(x_1,x_2),x_3)-a_i^2(x_1,a_j^2(x_2,x_3))+a_i^2(x_2,a_j^2(x_1,x_3))\right)
At order zero in
\varepsilon this is the Jacobi identity for
a_0^2\ ,
at order one the expression reduces to
0=a_0^2(a_1^2(x_1,x_2),x_3)-a_0^2(x_1,a_1^2(x_2,x_3))+a_0^2(x_2,a_1^2(x_1,x_3))+
a_1^2(a_0^2(x_1,x_2),x_3)-a_1^2(x_1,a_0^2(x_2,x_3))+a_1^2(x_2,a_0^2(x_1,x_3))\ :
=d^{(0)}(x_3)a_1^2(x_1,x_2)-d^{(0)}(x_1)a_1^2(x_2,x_3)+d^{(0)}(x_2)a_1^2(x_1,x_2)
+a_1^2([x_1,x_2],x_3)+a_1^2(x_2,[x_1,x_3])-a_1^2(x_1,[x_2,x_3])\ :
=-d^2 a_1^2(x_1,x_2,x_3)
So one has to require that
a_1^2\in Z_\wedge^2(\mathfrak{g},\mathfrak{g})\ .
A rather trivial way of obtaining a new bracket is by applying a formal transformation to
\mathfrak{g}\ .
This leads to
\phi_\varepsilon(x)=\sum_{i=0}^\infty \varepsilon^i b_i^1(x),\quad b_i^1\in C^1(\mathfrak{g},\mathfrak{g})
with
b_0^1(x)=x\ ,
and
\phi_\varepsilon^{-1} ([\phi_\varepsilon(x_1),\phi_\varepsilon(x_2)])\ :
=[x_1,x_2]+\varepsilon\left(d^{(0)}(x_1)b_1^1(x_2)-d^{(0)}(x_2)b_1^1(x_1)-b_1^1([x_1,x_2])\right)+O(\varepsilon^2)\ :
=[x_1,x_2]+\varepsilon d^1 b_1^1(x_1,x_2)+O(\varepsilon^2)
One sees that if
\phi_\varepsilon is required to be a Lie algebra homomorphism,
b_1^1\in Z^1(\mathfrak{g},\mathfrak{g})\ . This can be trivially done by letting
b_1^1\in B^1(\mathfrak{g},\mathfrak{g})\ , that is,
b_1^1(x)=d^0 b_1^0 (x)=-[b_1^0,x]\ .
In this case
b_1^0\in\mathfrak{g} is called the
infinitesimal generator of
\phi_\varepsilon\ .
This is the usual situation in
normal form theory.
In the case of formal deformations one sees that a trivial deformation a_1^2=d^1 b_1^1 can be realized by a formal coordinate transformation x\mapsto x+\varepsilon b_1^1(x) +O(\varepsilon^2)\ .
This implies that the existence of a nontrivial formal deformation implies the existence of a nontrivial element [a_1^2]\in H_\wedge^2(\mathfrak{g},\mathfrak{g})\ .
The question now is whether this is enough, in other words, is this the only obstruction?
Consider (2) at order two. One obtains
0=a_0^2(a_2^2(x_1,x_2),x_3)-a_0^2(x_1,a_2^2(x_2,x_3))+a_0^2(x_2,a_2^2(x_1,x_3))\ :
+a_1^2(a_1^2(x_1,x_2),x_3)-a_1^2(x_1,a_1^2(x_2,x_3))+a_1^2(x_2,a_1^2(x_1,x_3))\ :
+a_2^2(a_0^2(x_1,x_2),x_3)-a_2^2(x_1,a_0^2(x_2,x_3))+a_2^2(x_2,a_0^2(x_1,x_3))
=[a_2^2(x_1,x_2),x_3]-[x_1,a_2^2(x_2,x_3)]+[x_2,a_2^2(x_1,x_3)]\ :
+a_1^2(a_1^2(x_1,x_2),x_3)-a_1^2(x_1,a_1^2(x_2,x_3))+a_1^2(x_2,a_1^2(x_1,x_3))\ :
+a_2^2([x_1,x_2],x_3)-a_2^2(x_1,[x_2,x_3])+a_2^2(x_2,[x_1,x_3])
= -d^2a_2^2 (x_1,x_2,x_3)+\frac{1}{2}[a_1^2,a_1^2]_{\hat{\mathcal{G}}}(x_1,x_2,x_3)
One needs the equivalence class of
[a_1^2,a_1^2]_{\hat{\mathcal{G}}} to be trivial.
It is already shown that
[a_1^2,a_1^2]_{\hat{\mathcal{G}}}\in Z_\wedge^3(\mathfrak{g},\mathfrak{g})\ ,
so this is not an impossibility, but is is a possible obstruction if
H_\wedge^3(\mathfrak{g},\mathfrak{g})\neq 0\ .
Consider (2) at order three. One obtains
d^2a_3^2 =[a_1^2,a_2^2]_{\hat{\mathcal{G}}}
One computes
d^3[a_1^2,a_2^2]_{\hat{\mathcal{G}}}=[a_1^2,d^2 a_2^2]_{\hat{\mathcal{G}}}=\frac{1}{2}[a_1^2,[a_1^2,a_1^2]_{\hat{\mathcal{G}}}]_{\hat{\mathcal{G}}}
and so one needs
[a_1^2,[a_1^2,a_1^2]_{\hat{\mathcal{G}}}]_{\hat{\mathcal{G}}} to be zero.
In general one finds
d^2a_n^2 =\frac{1}{2}\sum_{i=1}^{n-1} [a_i^2,a_{n-i}^2]_{\hat{\mathcal{G}}}
This implies that a necessary condition is that
[a_1^2,\dots,[a_1^2,a_1^2]_{\hat{\mathcal{G}}}\dots]_{\hat{\mathcal{G}}} be zero (The
Massey powers of the class
[a_1^2]\in H^2(\mathfrak{g},\mathfrak{g}) vanish).
It is sufficient for the existence of a formal deformation to require that
[a_i^2,a_j^2] be trivial for
i,j>0\ .
exercise
Assume a_1^2 to be trivial. What does this imply for all the obstructions?
example
Let \mathfrak{g}=P[x,y]\ . Define
a_0^2(f,g)=[f,g]=\frac{\partial f}{\partial x}\frac{\partial g}{\partial y}
-\frac{\partial g}{\partial x}\frac{\partial f}{\partial x}
One verfies that
[f,gh]=[f,g]h+g[f,h]
Define
a_1^2(f,g)=f_{xx}g_{yy}-f_{yy}g_{xx}
One computes
d^2 a_1^2(f,g,h)=[f,a_1^2(g,h)]-[g,a_1^2(f,h)]+[h,a_1^2(f,g)]-a_1^2([f,g],h)-a_1^2(g,[f,h])+a_1^2(f,[g,h])\ :
=[f,g_{xx}h_{yy}]-[f,g_{yy}h_{xx}]-[g,f_{xx}h_{yy}]+[g,f_{yy}h_{xx}]+[h,f_{xx}g_{yy}]-[h,f_{yy}g_{xx}]\ :
- -(f_xg_y-f_yg_x)_{xx}h_{yy}+(f_xg_y-f_yg_x)_{yy}h_{xx}-g_{xx}(f_xh_y-f_yh_x)_{yy}+g_{yy}(f_xh_y-f_yh_x)_{xx}+f_{xx}(g_xh_y-g_yh_x)_{yy}
-f_{yy}(g_xh_y-g_yh_x)_{xx}\ :
=[f,g_{xx}]h_{yy}-[f,g_{yy}]h_{xx}-[g,f_{xx}]h_{yy}+[g,f_{yy}]h_{xx}+[h,f_{xx}]g_{yy}-[h,f_{yy}]g_{xx}\ :
- +g_{xx}[f,h_{yy}]-g_{yy}[f,h_{xx}]-f_{xx}[g,h_{yy}]+f_{yy}[g,h_{xx}]+f_{xx}[h,g_{yy}]-f_{yy}[h,g_{xx}]\ :
- -(f_xg_y-f_yg_x)_{xx}h_{yy}+(f_xg_y-f_yg_x)_{yy}h_{xx}-g_{xx}(f_xh_y-f_yh_x)_{yy}+g_{yy}(f_xh_y-f_yh_x)_{xx}+f_{xx}(g_xh_y-g_yh_x)_{yy}\ :
-
-f_{yy}(g_xh_y-g_yh_x)_{xx}\ :
=([f,g_{xx}]-(f_xg_y-f_yg_x)_{xx}-[g,f_{xx}])h_{yy}
+(-[f,g_{yy}]+[g,f_{yy}]+(f_xg_y-f_yg_x)_{yy})h_{xx}
+([h,f_{xx}]-[f,h_{xx}]+(f_xh_y-f_yh_x)_{xx})g_{yy}
\ :
- +(-[h,f_{yy}]+[f,h_{yy}]-(f_xh_y-f_yh_x)_{yy})g_{xx}
+(-[g,h_{yy}]+[h,g_{yy}]+(g_xh_y-g_yh_x)_{yy})f_{xx}
+([g,h_{xx}]-[h,g_{xx}]
-(g_xh_y-g_yh_x)_{xx})f_{yy}\ :
=2(f_{xy}g_{xx}-f_{xx}g_{xy})h_{yy}
-2(f_{yy}g_{xy}-f_{xy}g_{yy})h_{xx}
-2(f_{xy}h_{xx}-f_{xx}h_{xy})g_{yy}
\ :
- +2(f_{yy}h_{xy}-f_{xy}h_{yy})g_{xx}
-2(g_{yy}h_{xy}-g_{xy}h_{yy})f_{xx}
+2(g_{xy}h_{xx}-g_{xx}h_{xy})f_{yy}\ :
=0
But is this a nontrivial cocycle, as claimed in
Fuchs, page 38?
The first candidate for a coboundary that comes to mind is
a_1^1(f)=f_{xy}
One computes
d^1 a _1^1(f,g)=[f,a_1^1(g)]-[g,a_1^1(f)]-a_1^1([f,g])\ :
=[f,g_{xy}]-[g,f_{xy}]-(f_xg_y-f_yg_x)_{xy}\ :
=f_xg_{xyy}-f_yg_{xxy}-g_xf_{xyy}+g_yf_{xxy}-(f_{xx}g_y +f_xg_{xy}-f_{xy}g_x-f_yg_{xx})_y\ :
=f_xg_{xyy}-f_yg_{xxy}-g_xf_{xyy}+g_yf_{xxy}-f_{xxy}g_y -f_{xy}g_{xy}+f_{xyy}g_x+f_{yy}g_{xx}-f_{xx}g_{yy} -f_xg_{xyy}+f_{xy}g_{xy}+f_yg_{xxy}\ :
=f_{yy}g_{xx}-f_{xx}g_{yy} \ :
=-a_1^2(f,g)
One can identify
P[x,y] with the space polynomial differential operators
P[x,\frac{d}{dx}] on the line
by putting
\widehat{x^m\frac{d^k}{dx^k}}=x^m y^k
One observes that
[x^k \frac{d^l}{dx^l},x^m \frac{d^n}{dx^n}]=x^k \frac{d^l}{dx^l}x^m \frac{d^n}{dx^n}-x^m \frac{d^n}{dx^n}x^k \frac{d^l}{dx^l}
Since
\frac{d^k}{dx^k}f=\sum_{i=0}^{k} {k\choose i} f_i \frac{d^{k-i}}{dx^{k-i}}
and, with
f=x^m\ ,
f_i={m\choose i} x^{m-i}
one obtains
[x^k \frac{d^l}{dx^l},x^m \frac{d^n}{dx^n}]=\sum_{i=0}^{\min(l,m)} { {l}\choose{i}} { {m}\choose{i}} x^{k+m-i} \frac{d^{n+l-i} }{dx^{n+l-i} }
-\sum_{i=0}^{\min(n,k)} { {k}\choose{i}}{ {n}\choose{i}} x^{m+k-i} \frac{d^{l+n-i} }{dx^{l+n-i} }\ :
=\sum_{i=1}^{\max(\min(l,m),\min(n,k))} \left( { {l}\choose{i}} {{m}\choose{i} }
-{ {k}\choose{i}}{ {n}\choose{i}}\right) x^{m+k-i} \frac{d^{l+n-i} }{dx^{l+n-i} }
This can be written, with
f=x^k \frac{d^l}{dx^l}=\widehat{x^ky^l} and
g=x^m \frac{d^n}{dx^n}=\widehat{ x^m y^n}\ ,
as
\widehat{[f,g]}= \sum_{i=1}^\infty \left( \frac{\partial^i \hat{f}}{\partial x^i}\frac{\partial^i \hat{g}}{\partial y^i}-\frac{\partial^i \hat{f}}{\partial y^i}\frac{\partial^i \hat{g}}{\partial x^i}\right)= \sum_{i=0}^\infty a_i^2(\hat{f},\hat{g})
This is, by the way, another proof of the exactness of
a_1^2\ , one that illustrates the power of looking at the same object
from different angles.
deformation of an associative structure
Observe that similiar arguments hold for deformations of associative strucures.
References
- Fuks, D. B. Cohomology of infinite-dimensional Lie algebras. Translated from the Russian by A. B. Sosinski\u\i. Contemporary Soviet Mathematics. Consultants Bureau, New York, 1986. xii+339 pp. ISBN: 0-306-10990-5
- Gerstenhaber, Murray . The cohomology structure of an associative ring. Ann. of Math. (2) 78 1963 267--288. [2]